IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 6/7, JUNE/JULY 1993

1105

Reciprocity Relations in Waveguide Junctions

Dylan F. Williams and Roger B. Marks

Abstract— The Lorentz reciprocity condition is applied to
junctions composed of reciprocal media which connect uniform
but otherwise arbitrary waveguides. An expression relating the
forward and reverse transmission coefficients is derived and
factored into two terms: the first involving the phase of the ref-
erence impedance in the guide, and the second a new reciprocity
factor. The usual condition equating the forward and reverse
transmission coefficients is shown not to hold in the general
case. Experimental evidence supporting the theoretical results is
presented.

I. INTRODUCTION

N this work we consider the conditions relating the scatter-

ing parameters of reciprocal waveguide junctions, that is,
junctions containing only linear materials with symmetric per-
mittivity and permeability tensors. The junctions are assumed
to be connected to uniform waveguides in which only a single
mode of propagation is significantly excited.

If the waveguides are lossless, the forward and reverse trans-
mission coefficients of a reciprocal junction may be equated
as a result of the Lorentz reciprocity theorem [1]. This well-
known condition is especially useful when only the product
of the forward and reverse transmission coefficients can be
directly measured, as is the case in certain de-embedding
algorithms [2].

With the increasing use of planar transmission lines and
integrated circuits, junctions between waveguides supporting
lossy hybrid modes have become common. Microwave wafer
probes, which interconnect coaxial and coplanar lines, typify
such junctions. In these instances, the usual microwave circuit
theories (e.g., [1]) fail. This opens the possibility that the
forward and reverse transmission coefficients of the junction
may be unequal.

This work applies the Lorentz reciprocity theorem to de-
termine the relationship between the forward and reverse
transmission coefficients of an arbitrary reciprocal junction.
The derivation is based upon a general circuit theory [3] which
applies to lossy hybrid modes such as those found in coplanar
waveguide (CPW) or microstrip lines. The relationship is
shown to involve two terms: one dependent on the phase angle
of the reference impedance in the guide, and the other on a
new term, which we call the reciprocity factor. For illustration,
we calculate these terms for several guides. We also present
experimental measurements, which are consistent with the
theory, of the ratio of the forward and reverse transmission
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coefficients of a microwave probe. Some of these results have
been presented in [4].

II. SCATTERING PARAMETERS

Scattering parameters, which include the transmission co-
efficients of interest here, are conventionally defined to relate
the waves in the various waveguides attached to a junction.
However, many definitions of these waves are in common
use. Here we take a very general approach, making use of the
pseudowaves defined in [3]. These quantities are defined much
like ordinary traveling waves, which depend exponentially
on the axial coordinate. However, the definition makes use
of an arbitrary reference impedance. When this reference
impedance is equal to the characteristic impedance of the
waveguide, the pseudowaves reduce to the traveling waves.
Otherwise, the pseudowaves are simply traveling waves that
have been subjected to an impedance transform. This defini-
tion accommodates practical situations that demand the use
of a particular reference impedance. Commercial microwave
design tools restricted to the use of real reference impedances
provide one example. The definition is also closely connected
to the measurement process, in which the reference impedance
is determined by the calibration rather than simply defined in
an abstract sense.

Consider a two-port junction connected to two dissimilar
uniform semiinfinite waveguides. In each waveguide, a ref-
erence plane is chosen far enough from the junction that
higher-order modes are insignificant. Following the general
treatment of [3], which includes lossy lines, the characteristic
impedance of the mode may be defined from the modal
transverse electric field e, and magnetic field h, of the
forward propagating mode by

lVonIQ
Zon = ——, €))
po’n
where
p,mE/ e, X h} -ndS 2)

is the complex power carried across the surface o,,, coincident
with the reference plane in the nth guide (see Fig. 1), by the
normalized forward mode. The constant v,, is defined by

VonE_/ €n - dl, (3)
path

and n is the unit vector normal to o, directed into the
junction. The integration path in (3) lies in o, and a time
dependence e7*? is assumed. The phase of Z,, is independent
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Fig. 1. A general two-port junction. The surfaces oy and o3 are coincident

with the two waveguide ports of the junction. The surface oo in this case is
a cylinder, which may extend to infinity. The surface oo + o1 + 02 encloses
the entire junction.

of the normalization imposed by the choice of integration path.
Although Z,,, is real in lossless lines, it is, in general, complex.

We next define the waveguide voltage v,, and current ¢,, in
terms of the total transverse electric and magnetic fields E;,
and H;, in the guide

Un

€n, th = ﬁl—hn (4)

on ZO’VL

E, =

where 1o, = Von/Zon-
We then define the pseudowave amplitudes [3] as linear
combinations of v, and %,:

on| VRE(Zrn ,
a'n(Z'I'n> = |zon| m;z(r“')'(vn + inZrn) )

and

onl VVRe(Zrn )
bn(Zrn) = IU |—2—|eZ.(_—|—_)(vn - Z"Z?“n) . (6)

Von

Each waveguide’s reference impedance Z,.,, is arbitrary except
for restriction Re(Z,,,) > 0 [3]. The normalization used in
(5) and (6) is chosen to meet three criteria. The magnitude
enforces a power normalization of the pseudowaves. The phase
simplifies the reciprocity relations determined below. And,
finally, when Z,, is chosen to equal Z,,, the pseduowaves
reduce to the traveling waves, which depend exponentially on
the axial coordinate.

The net flow of power across the nth port may be written
in terms of the pseudowave amplitudes as

mzm/Emumﬁw=mmm=mﬁwm

Im(Z,,)

()
Notice that, because of the cross term a,b),, the power is
not simply the difference of the powers that would be carried
by the forward and backward pseudowaves acting alone. The
cross term, however, vanishes when Z,.,, is real

The pseudoscattering parameters S,,, of a junction are
defined in terms of the pseudowave amplitudes at each port
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in the conventional way as

bm = Z Smnan (8)

where the sum extends over all of the ports. Although not
denoted explicitly in (8), the pseudoscattering parameters are
functions of the reference impedances Z,.,,. For the special case
when Z,., = Z,, at each port, the pseudoscattering parameters
reduce to the conventional S-parameters, defined by

bm(Zom) = Y Stunn(Zon) - ©

Because the traveling waves a,(Z,,) and b,(Z,,) are
the physical waves that propagate in the line, the S;,,, are
directly measurable with slotted line techniques or with a
vector network analyzer calibrated with the thru-reflect-line
(TRL) technique [3]. The pseudowave S-parameters of (8) are
simply an impedance-transformed form of the S7,,.

The pseudowaves defined by (5) and (6) should not be
confused with the power waves defined by Kurokawa [5].
The power waves are not related to the traveling waves by an
impedance transform [3]. They also do not correspond to the S-
parameters determined by any conventional network analyzer
calibration method.

III. RECIPROCAL JUNCTIONS

The fields at each port of a waveguide junction may be
written as a superposition of the modal electric and magnetic
fields. For a two-port junction, it is always possible to find
sources J; and J2 placed outside the junction so that

A x Ey(J1) |, =0

o2

(10)
and

A x Ey(J) |, =0 (11)

where E.(J,) is the field due to sources J,. Now, (10) and
(11) are equivalent to

az(J1) + ba(J1) = ar(J2) + b1(J2) = 0 (12)

where the arguments J,, again indicate the source. If the
junction is reciprocal, the Lorentz reciprocity condition [1]
gives

]{ (Es(J1) x Ho(J2) = Bo(Ja) X He())
o1t+o2+0g
AdS=0 (13)

where the surface o; 4+ 02 + 0o encloses the entire junction,
as shown in Fig. 1, and 72 is the unit normal pointing into
the junction. If the fields are zero on og, or if og is a
perfectly conducting surface, is characterized by a scalar
surface impedance, or is infinitely far away, the integral
vanishes there [1]. Conditions (10) and (11) may be further
used to simplify (13), which reduces to

/ Eu(J1) x Hi(Ja) -fzdS:/ Eu(Js) x Hy(Jy) - 7dS.
" " (14)
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Using (4), (5), and (6), E: and H; may be expressed in terms
of the pseudowave amplitudes. Using these expressons in (14)
results in

*

[a1(J1) + b1 (J)][a1(J2) = b1(J2)]| K1 =

Re(Z,«l)
Z*
= J —b Ky—"2—
[a2(J2) + b2(J2)][az(J1) — b2(J1)] > Re(Z.2) (15)
where the reciprocity factor K, is defined as
ZOR A _on
,,:—2/ en X hy-2dS=2m " (16)
[Von|” Jon on
Here
1‘90”5/ en X hy-ndS. 17)
On

While (15) relates the pseudowave amplitudes at the two
ports only for the sources J; and .J,, it actually forces some
conditions on the S-parameters, as we will now show. First,
the b,, of (15) can be replaced by expressions involving only
the a,, and the S-parameters using (8) and (12) with the result

*

(Il (H)(1+81u) + Suoa( WK g

= az(J1)[a2(J2)(1 + S22) + Szﬂh(b)”@%
Next, the reflection coefficients can be eliminated from the
bracketed expressions in (18) with the relations (1 + Sy, ) =
—Smntn(Jrn)/am(J,) for n # m derived from (8) and
(12). The transmission parameters factor out of the resultant
expressions leaving identical terms involving the a,, on both
sides of the equation. This results in an expression that relates
only the transmission parameters

(18)

Z5 r2
= S K z .
Re(Z1) ' "Re(Zy2)
Equation (19) is easily extended to multiport junctions by
terminating all but the mth and nth ports in perfect matches,
and including those terminations within the surface o¢. The
result is

K 1= j In(Zrm)/Re(Zrm)

Snm _m

Swn  Kn 1—3jIm(Z.,)/Re(Zp)

Another proof of this generalized result is given in [3].
For the conventional S matrix relating the traveling wave
amplitudes, Z,, = Z,, and (20) becomes

(20)

Som _ Km 1 =7 Im(Zom)/Re(Zom)
Se . T K, 1 — 7 Im(Z,,)/Re(Z,r)
m/Re(pom)
= L2 om/ 21
M/Re(pon) @)

The corresponding condition on the impedance parameters
Znm, defined by vy, = 3 Zmnin, is [3]

an

Zmn K, 'U:n Vom

*
_ Ko Uonv3,,

(22)

Equations (20), (21), and (22) all involve the reciprocity
factors K, for each guide. While the phase of K, depends
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directly on the normalization of e, and h,, its magnitude is
unique, independent of the choice of voltage path in (3) and
of the choice of normalization of e,, and h,,. The phase of the
characteristic impedance is also independent of these normali-
zations. Thus, the quantities |S3,,,/S2,,.| and |Zpm/Zm,| are
unique and independent of normalization as well. Note that the
Znm are defined directly in terms of the waveguide voltages
and currents and are independent of the wave definitions and
normalizations. Thus, the appearance of the reciprocity factor
in (22) most clearly illustrates the fundamental difference
between these and previously reported results.

IV. PARTIALLY FILLED WAVEGUIDE

If the phase of the electric field is constant across a
waveguide, then the magnitude of the reciprocity factor K for
that guide must be 1. Otherwise, such as when the waveguide
is partially filled with a lossy dielectric, K may differ from 1.

We calculated the magnitude of the reciprocity factor of
the dominant mode of a rectangular waveguide partially filled
with a lossy dielectric following Harrington [6] and plotted the
reciprocity factor in Fig. 2. The continuity of the normal com-
ponent of the electric displacement across the air—dielectric
boundary forces the electric field to change phase across that
boundary. This results in a complex reciprocity factor with
magnitude less than 1, as illustrated in Fig. 2. For a junction
connecting this waveguide to a hollow rectangular waveguide
of the same dimensions, application of (20) and (22) shows
that the impedance matrix is asymmetric and that even when
all reference impedances are chosen to be real, the forward
and reverse transmission coefficients are unequal.

V. CoxiAL LINES

The phases of the electric and magnetic fields are nearly
constant over the cross section of many common guides.
Coaxial lines, hollow rectangular and circular waveguide, and,
to a lesser extent, quasi-TEM lines are examples. We expect

Partially filled waveguide

K|

0.24 3]

0.2

4SS

0 L 2
1.0 12 1.4 1.6 18 2.0

frf
¢

Fig. 2. The magnitude of the reciprocity factor for the dominant mode in a
waveguide partially filled with a lossy dielectric. The frequency is normalized
to the cutoff frequency of the mode in the empty guide.
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Fig. 3. Im(Z,)/Re(Z,), equal to the tangent of the phase of Z,, for a
2.4 mm coaxial line. The center conductor has a diameter of 1.042 mm and
metal resistivity of 2 2 p£2 - cm. The plotted values were calculated using
the results of Daywitt [7].

the magnitude of the reciprocity factor to be nearly 1 in these
guides.

We investigated the reciprocity factor of 2.4 mm coaxial air
lines using the calculation technique of Daywitt [7], which
rigorously includes the penetration of fields into lossy metal
conductors. The phases of the electric and magnetic fields are
nearly constant, and the magnitude of K is nearly 1 at low
frequencies. Even at 50 GHz, which is near the frequency at
which higher-order modes begin to propagate, the magnitude
of K deviates from 1 by less than 3 x 10710, Thus, in
coaxial lines, the impedance matrix is nearly symmetric and
the phase of the reference or characteristic impedance is the
only significant factor in (20) and (21).

Reference [8] noted that the characteristic impedance of
coaxial air lines varies greatly at low frequencies where, in
the limit, the phase angle of Z, approaches —45°. Thus, the
contribution of the phase of Z, in (21) cannot be ignored at
low frequencies. This is illustrated in Fig. 3.

VI. THE EXPERIMENTAL DETERMINATION OF |S21/572]

The magnitudes of S§; and S7, of a waveguide junction
may, in principle, be determined directly from microwave
power measurements. The procedure begins with the measure-
ment of the power transferred from a source into a power
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meter, both of which are reflectionless with respect to the
traveling waves in the waveguide of port 1 of the junction.
Then port 1 of the junction is connected to the source, and
port 2 to a second power meter which is reflectionless with
respect to the traveling waves in the waveguide of gort 2 of
the junction. The ratio of the two powers is |Sg|* - |5,/
may also be measured by reversing the experiment. The
quotient |Sg;/S%,| then tests the reciprocity condition. If
the experiment is performed on a reflectionless junction, and
[S$1] # S92/, the difference in the measured power ratios is
entirely due to the preferential abosrption of power traveling
in one of the two directions within the junction. If, instead, the
sources and power meters in the experiment are reflectionless
with respect to pseudowaves in the two waveguides, the ratio
|S21/S12| is determined.

In [9] we reported a similar experiment for a junction
connecting a 2.4 mm coaxial line and a coplanar waveguide
(CPW) line. The waveguide junction was a microwave probe,
and power from a microwave power source was transferred
through it to a thermistor bead mounted in a short section of
CPW.

In the experiment reported in [9], the product S3; 5%, was
determined by the two-tier TRL de-embedding technique,
allowing the ratio |S%;/5%,| to be determined without a
reverse power measurement. Furthermore, neither the micro-
wave source nor the thermistor bead was reflectionless. To take
that into account, the transducer efficiency 7 of the microwave
probe and the short section of CPW line that it contacted,
given by

n= 5 (23)

was measured. Here P4 is the power available from the
source, and P is the power delivered to the load. The
transducer efficiency 7 is the equivalent of the transducer
power gain described in [10], or the inverse of the transducer
loss described in [11]. In the experiment, P4 was determined
by first connecting the source to a calibrated coaxial sensor
head and measuring the power dissipated in the sensor head.
Then the reflection coefficients of the source and sensor head
were measured, and P4 calculated form the data. P; was
determined by a dc substitution technique.

The transducer efficiency of the probe (including the short
section of CPW line) is related to its pseudoscattering param-
eters by (24) shown below [9] where I's and 'y are the

18P (1 = I0s) (1 - IDL[? - 2 Im(Iz) Tm(Z,2)/Re(Z12))

n 2 ’ (24)
|(1 = Sul's)(1 — Sa2l'L) — S218120'sT'L |
S| _ nl(1 = $11Ts)(1 — S35T1) — S21S12TsT|? 25)
Si2] 18318121 (1= ITsP”) (1 = T2 f* = 2 Im(T'1) Im(Zy)/Re(Zy2) )
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Fig. 4. Measurements of |S3; /S%,| and |S21/S12| (with Z,2 real) based
on (25) compared to the values calculated from (20) and (21) under the
assumption |K1| = |K2| = 1. The calculated and measured results agree
closely, and |5, /57,| deviates significantly from unity, especially at the
low frequencies. At very low frequencies, the prediction from (21) approaches
1/v/2 because the phase angles of Z,o approaches —45° [8].

reflection coefficients of the microwave source and thermistor
bead, respectively, and Z, is the reference impedance at the
CPW port. Rearrangement of (24) then allows us to write
|S21/S12]| strictly in terms of measured quantities (25).

In the squares of Fig. 4, we have plotted |53,/5%,|, as
determined from (25). In the experiment, S%;, 53,, and 53,575,
the scattering parameters of the intervening probe and line,
were measured using the two-tier multiline TRL de-embedding
technique [12]. The characteristic impedance Z,; of the CPW
was determined from its propagation constant using the tech-
nique of [8]. The agreement is good, and |S3,/5%,| deviates
significantly from 1, especially at the low frequencies. At very
low frequencies, the prediction form (21) approaches 1/ V2
because the phase angle of 7,5 approaches —45° [8].

For comparison, we have also plotted |S21/512|, represented
by circles in the figure, for the case when the calibration
reference impedance at the CPW port is set real. The measured
data plotted in Fig. 4 are compared to the predictions of (20)
and (21) under the assumption that |K;| = |K2| = 1 (see
dashed and solid lines in Fig. 4). Again, the agreement is
quite good.

VII. CONCLUSIONS

We have derived a general condition relating the forward
and reverse transmission coefficients of a reciprocal junction
connected to uniform but otherwise arbitrary waveguides. The
condition differs from the usual relation equating the two
transmission coefficients in that it involves a reciprocity factor
and the phase angle of the reference impedance in each guide
connected to the junction.

In lossless TEM, TE, and TM guides, the characteristic
impedance is real and the reciprocity factor can be chosen to be
1 (see the Appendix). If this is done, the usual relation equating
the actual forward and reverse transmission coefficients holds.
Some other less common conditions for which this is true are
discussed in the Appendix.
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In coaxial lines constructed with typically lossy metals,
the magnitude of the reciprocity factor is nearly 1, and its
deviation from unity can be safely neglected. The phase of
the characteristic impedance, however, must be considered at
low frequencies. The simplest method of properly accounting
for the phase of the characteristic impedance is to use the
pseudowaves with a real reference impedance, rather than the
traveling waves, in the formulation. Then the forward and
reverse transmission parameters of a reciprocal junction are
nearly equal.

Our experiments indicate that the reciprocity factor can
also be safely neglected in coplanar lines. The experimental
evidence showed that at low frequencies, the effects of the
complex characteristic impedance, however, are large even at
moderately higher frequencies and cannot be neglected.

We also presented an example of a rectangular waveguide
partially loaded with a lossy dielectric that showed that the
magnitude of the reciprocity factor may deviate significantly
from 1. Thus, in some circumstances, both the phase of the
characteristic impedance and the magnitude of the reciprocity
factor must be considered to determine the relation between
the forward and reverse transmission parameters of a recip-
rocal junction. In this case, even the impedance matrix is
asymmetric.

APPENDIX [
COMMON CONDITIONS FOR WHICH |K,| = 1

The phases of the transverse electric and magnetic fields in
lossless guides are constant and equal over the guide cross
section. Thus, the characteristic impedance is real and the
magnitude of the reciprocity factor is 1 in lossless guides. If,
as is conventional, e,, and h,, are chosen to be real, K,, = 1.

It is possible to write the reciprocity factor as

[, een-endS+ [ phZ, dS
Ko=-22 " n (26)
[, elealdS — [, p'lhonl’ dS
N fan phy - by dS + fan ee? dS
" — [, wrlhal’dS + [, eleal’ dS

where 1y, is the propagation constant of the nth mode. Thus,
if the mode is TM (h,,, = 0) and the phase of e,, is constant,
then (26) implies |K,| = 1. While TEM guides satisfy these
conditions, not all TM guides do. The lossy coaxial lines
studied here, for example, are TM but the magnitude of K, is
not exactly equal to 1. If the mode is TE (e., = 0), u is real,
and the phase of h,, is constant, then (27) implies |K,| = 1.
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